BOTTLE-TO-BOTTLE

Technologies

• VACUNITE®
• VACUREMA®
• VACUREMA® Inline Preform

CHOOSE THE NUMBER ONE.
A SAFE CHOICE.
Bottle-to-bottle solutions from EREMA.

Because it's about your brand.
Clean melt, clean recycled pellets, clean preforms. EREMA bottle-to-bottle systems stand for uncompromising food contact compliance, highly efficient decontamination, high-performance filtration and safe handling. For top-quality end products.

It's so easy.
Stable processes and consistently high quality pellets and preforms. Production and plant managers appreciate these characteristics of VACUNITE® and VACUREMA® systems. Simple operation and a high degree of automation included. The fact that the end product remains stable even if the input material parameters change is a clear flexibility bonus. Safe and proven - around 250 VACUREMA® systems are in use worldwide.

A reliable investment.
The best decision is a safe decision. EREMA bottle-to-bottle systems offer impressively low total cost of ownership, low energy consumption and high uptime. Fully in keeping with high productivity, cost effectiveness and efficiency. And that you can safely rely on.

ADVANTAGES

- Superclean rPET pellets
- For direct food contact with IV value on a par with virgin material
- Flexible input, consistent output consistent end products in terms of IV value and colour despite varying moisture, IV values, bulk densities and flake wall thicknesses of the input material
- Maximum resource efficiency technology saves energy, water and space
- Easy to operate high degree of automation
- Safe and proven 100 times over
The central advantage of VACUNITÉ® and VACUREMA® systems is the unique SafeFlake technology in the vacuum reactor, which unites several central functions in one - in particular flake decontamination, drying and IV treatment.

By pre-treating the PET flakes in a vacuum at the correct temperature - and, in the case of VACUNITÉ®, with the additional application of nitrogen - moisture and migratory substances are removed effectively as part of the process before extrusion. This prevents any hydrolytic and oxidative decomposition of the melt in the extruder. A clear advantage in terms of melt quality and therefore the basis for a stable, highly clean and food-compliant end product with the best colour values.

SafeFlake

Reliable decontamination of the flakes.

- **SafeFlake decontamination** ensures reliable removal of migration substances and moisture as well as IV treatment of the PET flakes BEFORE extrusion.
- Better melt quality, better end product quality.
- Compensates for different moisture and IV values in the input material - for more flexibility.
Save costs thanks to energy efficiency.

Electricity accounts for around one third of the costs of bottle-to-bottle recycling. Technologies that use energy economically therefore have a clear advantage. EREMA sets the standard here with top energy efficiency for VACUREMA® Prime, which undercuts the magic threshold of 0.30 kWh/kg specific total energy consumption. And only 0.35 kWh/kg consumption for VACUNITE® - from flake to finished rPET pellets, including SSP. That is energy efficiency that really pays off. Hour after hour.

Consistent output despite input fluctuations.

Thanks to SafeFlake’s vacuum technology, the system achieves the required IV values and maintains them at a stable level - even though the input material has mixtures of different IV values and wall thickness as well as varying humidity. The intrinsic viscosity (IV) is so stable here that the values even lie within the tolerance limits for virgin PET material. For constant quality and high product safety.

Built for 24/7.

Supported with valuable feedback from EREMA customers, our engineers and product developers have come up with some ingenious solutions to make the processes used in VACUNITE® and VACUREMA® systems simple, safe and efficient. This is proven by numerous patents that make it possible to achieve high throughput in a very direct way - without detours. The philosophy is: “Fewer components, but they must be high-quality with a robust design,” for more safety, less maintenance and higher overall equipment availability.

Top energy efficiency

- Energy-saving SafeFlake vacuum pretreatment: decontamination, drying and IV treatment of flakes in one step
- SafeFlake pre-treatment makes it possible to use a short extruder, without additional degassing
- Saves production costs
- Lowers the Total Cost of Ownership (TCO)
- Saves resources and reduces CO₂ emissions

Uncompromising stability: IV free from fluctuations

- The IV value achieved remains stable
- IV values the same as virgin material
- Decisive quality advantage for further processing into preforms and for subsequent stretch blow moulding
- High product safety
- Equipped for the future: up to 100 % rPET in new bottles

Ingenious design. Robust components.

- Durable components
- Maximum system availability
- Less maintenance
- Enhanced safety

* EREMA bottle-to-bottle technologies consume up to 36 % less energy (kWh/kg) than systems from other suppliers.
Unites vacuum and nitrogen technology
VACUNITE®

For the highest requirements. Impressive energy-efficient brand owner quality.

VACUNITE® redefines the benchmark for performance in bottle-to-bottle recycling: Uncompromising safety, productivity and quality are ensured thanks to the highest decontamination efficiency, rPET granulates with the best colour values, top IV stability, compactness of the system as well as low energy consumption throughout the entire process.

Your combination for safety: Advanced VACUREMA® + Polymetrix SSP

This is made possible by the unique combination of two technologies: VACUNITE® unites VACUREMA® technology, which has been tried and tested for decades and has been further developed especially for this application - together with newly patented vacuum-assisted V-LeaN Solid State Polycondensation (SSP), which was also specially developed by Polymetrix (the manufacturer) for EREMA for this demanding application. Key quality and safety advantage: All thermal process steps take place in nitrogen and/or vacuum atmosphere.

ADVANTAGES

- Highly efficient decontamination, minimal VOC content, AA level < 1 ppm = Brand Owner Approved
- Higher rPET content is possible in the end product thanks to the best rPET colour values = fit for the future
- Very energy-saving: Only 0.35 kWh/kg specific energy consumption (All-in: including all auxiliary units such as the chiller for cooling water treatment, at 1,000 kg/h)
- Around 40 % fewer components

Equipped for the future: Better output despite poorer input

In order to be approved for contact with food, recycled PET plastics must meet increasingly stringent quality criteria. At the same time, the demand for high-quality recycled pellets on the market is increasing because legal requirements and voluntary commitments of leading brand manufacturers demand a higher use of resylates in the end products. Although overall this increases the collection rate, it also leads to poorer quality input materials for recycling because the proportion of inhomogeneous components in the material flow also increases. This means that recycling plants today, and in the future, have to produce better quality output material with poorer quality input material.

Thanks to the intelligent combination of technology, VACUNITE® excels at this new challenge with flying colours.
THE ADVANTAGES OF VACUNITE® TECHNOLOGY

- ~ 40% fewer components required* -> less energy, lower costs
- 36% less energy needed* -> lower costs, better environment
- Proven technologies developed for VACUNITE®
- More safety and quality
 All thermal processes are in nitrogen and/or vacuum atmosphere

THE ADVANTAGES OF V-LEAN SSP

1. First in - First out
2. Highly efficient decontamination
3. Hardly any yellowing thanks to controlled pellet heating in nitrogen atmosphere in the preheater
4. Excellent preform clarity

* EREMA bottle-to-bottle technologies consume at least 36% less energy (kWh/kg) than systems from other suppliers.

Vacuum assisted solid state polycondensation (V-LeaN SSP) in nitrogen
The vacuum reactor is also a place where the nitrogen stream is flushed with high-purity nitrogen (N2, 99.99%). The combination of vacuum, the right nitrogen flow and temperature allows the materials to be dehumidified. This dehumidification stage helps to achieve a very low residual moisture of under 0.05% the clean, ideally dry material enters the extruder. The material moves layer by layer in the direction of the single-screw extruder and plays a significant part in the VACUNITE® process. This material transfer takes place under high vacuum. As a result, no additional dehumidifying processes are required on the extruder itself.

In addition to decontamination and drying, the bulk density of the material is reduced. This results in a highly effective and material-friendly reduction in the number of components and energy efficiency, because overall the VACUNITE® process enables very high crystallisation rates (>40%) without having to install additional post-crystallisation processes. This is a decisive advantage in terms of the number of components and energy efficiency, because overall the VACUNITE® process requires around 40% fewer components and thus up to 36% less energy than comparable systems on the market. The process enables very high crystallisation rates (>40%) without having to install additional post-crystallisation processes. This is a decisive advantage in terms of the number of components and energy efficiency, because overall the VACUNITE® process requires around 40% fewer components and thus up to 36% less energy than comparable systems on the market.

As an end product, the new VACUNITE® technology produces rPET pellets that are compliant to current legal requirements. This allows for the production of new, highly sustainable applications such as automotive, packaging and construction industries. The new VACUNITE® technology enables very high crystallisation rates (>40%) without having to install additional post-crystallisation processes. This is a decisive advantage in terms of the number of components and energy efficiency, because overall the VACUNITE® process requires around 40% fewer components and thus up to 36% less energy than comparable systems on the market.

The pellets are blown into a buffer vessel via a pressure transport system. There, a rotary valve releases the pellets into a heat exchanger, where they are preheated to a specific temperature. In a final process step, the pellets are finally cooled in a cooling tower. In addition, the viscosity in the SSP is raised again to values that are suitable for return to the upstream process steps. In the subsequent water ring pump system, the nitrogen is purged again so that it can be returned to the upstream process steps. In addition, the viscosity in the SSP is raised again to values that are suitable for return to the upstream process steps.

As an end product, the new VACUNITE® technology produces rPET pellets that are compliant to current legal requirements. This allows for the production of new, highly sustainable applications such as automotive, packaging and construction industries. The new VACUNITE® technology enables very high crystallisation rates (>40%) without having to install additional post-crystallisation processes. This is a decisive advantage in terms of the number of components and energy efficiency, because overall the VACUNITE® process requires around 40% fewer components and thus up to 36% less energy than comparable systems on the market.
VACUNITE® Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum (h⁻¹)</th>
<th>Maximum (kg/h)</th>
<th>Advantages</th>
<th>Residual moisture</th>
<th>Food Grade</th>
<th>L/D drive-rating</th>
<th>Granulometry</th>
<th>Advantages</th>
<th>Final pellet quality</th>
<th>Space needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.63 M 1000</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 1000</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 1200</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 1200</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 1400</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 1600</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 1800</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 2000</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 2250</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>VACUNITE® 15 T - 9000</td>
<td>1500</td>
<td>0.6 M 2500</td>
<td></td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>FDA N.O.L. / E.S.A</td>
<td>~ 26</td>
<td>< 10</td>
<td>< 50 ppm</td>
<td>< 1 ppm</td>
</tr>
</tbody>
</table>

*At an input flake IV of 0.76 dl/g
Subject to latest technical updates.
VACUREMA®

Compact TCO champion. The benchmark in saving energy. Maximum flexibility.

Highly efficient decontamination, safe, stable and fast results. With VACUREMA® technology, you can rely on an efficient and extremely cost effective system that compactly unites all the necessary bottle-to-bottle process steps. Uncompromising food contact compliance, impressively low total cost of ownership (TCO) and strong advantages in terms of flexibility are the cornerstones of the success of this system, which has been proven several hundred times and is continuously updated with the latest technology.

ADVANTAGES

- **Fast and flexible**
 The final IV value is achieved before granulation - so it is possible to change products from one defined pellet quality to another very quickly.

- **VACUREMA® Prime.**
 The benchmark in saving energy.
 Extreme energy efficiency: Only 0.35 kWh/kg specific energy consumption (All-in: including all auxiliary units such as the chiller for cooling water treatment, at 1,000 kg/h).

- **TCO champion**
 Low total cost of ownership (TCO): a complete, efficient, energy-saving system that combines all the necessary bottle-to-bottle process steps into one compact process.

- **High energy-efficiency**
- **No nitrogen**
- **Minimum maintenance costs**
- **Small footprint and workshop height**

Only 0.295 kWh/kg – this is how low the specific total energy consumption of the VACUREMA® Prime bottle-to-bottle system is. This outstanding figure regarding energy efficiency was achieved in impressive style by the EREMA system in an independent comparison with eight other PET processing lines. Source: SKZ – Das Kunststoff-Zentrum, value measured excluding customer’s chiller for supplying cooling water at a throughput of 1,650 kg/h.

0.295 kWh/kg.

VACUREMA® Prime - the benchmark in saving energy.
Specific total energy consumption kWh/kg
VACUREMA® ADVANCED & PRIME

Short processing time = quick and reliable results. Thanks to the multiple potentials of SafeFlake.

One of the core strengths of the VACUREMA® system is that the entire process - from the flake to the finished, food contact rPET pellet - is particularly fast, efficient and safe. This is made possible by the unique SafeFlake technology in the vacuum reactor, because it combines several key functions in one - in particular flake decontamination, drying and IV treatment. With VACUREMA® Advanced and VACUREMA® Prime, the full potential is unleashed in two reactors. The VACUREMA® Prime even operates in proper batch mode.

- More flexibility
 Time and information advantage*
 Final pellet quality values achieved before pelletising.

- Quick product change
 From one defined quality to another. For example, if you want to change from recycled pellets for water bottles to bottles for hot drinks.

- Highly effective decontamination
 Before extrusion

- Up to 40 % less dwell time in the extruder*
 Less thermal stress, better colour values, less energy, lower costs

- Flexible with input
 Even when moisture, IV values, bulk densities & flake wall thickness vary ...

- Stable output
 ... IV value and colour remain constant

- 36 % less energy needed*
 - lower costs, better for the environment

- No additional post-crystallisation needed

- High flexibility for quick product changes

- Final IV before pelletising
 Fast, safe overall process (thereby 100 % online IV control)

* compared with other systems on the market from alternative suppliers
How it works.

The two identical crystallisation dryers are situated immediately upstream of the continuously operating vacuum reactor. The IV increase of the PET flakes takes place inside the reactor through solid-phase polycondensation which takes it to the required level. The material is melted under vacuum in the directly connected extrusion system.

The benefits of the VACUREMA® extruder: robust single screw technology and compact design for minimum thermal material stress.

Technical data.

<table>
<thead>
<tr>
<th>Model</th>
<th>System</th>
<th>Total energy consumption (0.35 kWh/kg)*</th>
<th>Food Grade</th>
<th>Pellet form</th>
<th>Residual moisture</th>
<th>IV increase maximum</th>
<th>Final pelletivity</th>
<th>Space needed [m²]</th>
<th>Vacuum [mbar]</th>
<th>Height / Space needed [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIME 1310 T</td>
<td>System IV</td>
<td>1310</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 500</td>
<td>285</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 1512 T</td>
<td>System IV</td>
<td>1512</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 700</td>
<td>320</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 1714 T</td>
<td>System IV</td>
<td>1714</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 1000</td>
<td>360</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 1716 T</td>
<td>System IV</td>
<td>1716</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 1300</td>
<td>405</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 2018 T</td>
<td>System IV</td>
<td>2018</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 1600</td>
<td>475</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 2321 T</td>
<td>System IV</td>
<td>2321</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 1900</td>
<td>540</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 2625 T</td>
<td>System IV</td>
<td>2625</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 2200</td>
<td>620</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
<tr>
<td>PRIME 2628 T</td>
<td>System IV</td>
<td>2628</td>
<td>FDA NOL / efsa</td>
<td>inline crystallised</td>
<td>0.10</td>
<td>0.82 @ 2400</td>
<td>685</td>
<td>6.0 / 10.0</td>
<td>270</td>
<td>390</td>
</tr>
</tbody>
</table>

*At an input flake IV of 0.76 dl/g. Subject to latest technical updates.
VACUREMA® INLINE PREFORM

The direct route from flake to preform.

Fast, efficient, safe and extremely energy-saving: Innovative VACUREMA® Inline Preform Technology converts post consumer PET flakes – directly from the melt – into food contact compliant preforms in one continuous process step. These can consist of up to 100% rPET and achieve impressive colour values - there is hardly any yellowing.

They save the detour of pellet production to deliver a series of advantages: Big savings in energy consumption, fewer machine components and therefore reduced TCO as well as significantly less space, logistics and processing costs. For more cost-effectiveness in your preform production.

The system unites the efficiency benefits of proven VACUREMA® technology with SIPA’s innovative XTREME preform production system. By combining injection and compression techniques this system allows you to produce preforms that are up to 10% lighter than even the lightest injection moulded preforms. And this is possible without losing any key characteristics.

<table>
<thead>
<tr>
<th>Number of cavities</th>
<th>Flakes</th>
<th>Max. number of preforms / hour</th>
<th>Min. wall thickness of preform base (mm)</th>
<th>Max. preform weight (g)</th>
<th>Max. preform length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>100 %</td>
<td>70,000</td>
<td>0.95</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>72</td>
<td>100 %</td>
<td>57,600</td>
<td>0.95</td>
<td>60</td>
<td>150</td>
</tr>
</tbody>
</table>

ADVANTAGES

- **SafeFlake:** Highly efficient decontamination
- **The system for 100 % rPET content in the preform = fit for the future**
- **The system for extremely light bottles**
- **Safe, fast, flexible - from flake to finished preform in the shortest possible process time:** This makes the fastest product changes possible.
From flake to finished preform in the shortest possible process time!

KEY BENEFITS

- **Up to 30% lower energy consumption**
 A continuous thermal cycle from flake to preform
- **Up to 60% lower CO₂ emissions**
- **Significantly fewer machine components** therefore better TCO (Total Cost of Ownership)
- **Lower logistics, process and transport costs**

THE ADVANTAGES OF VACUREMA® TECHNOLOGY

1. Flexible with input
 Even when moisture, IV values, bulk densities & flake wall thickness vary ...
2. Stable output
 ... IV value and colour remain constant
3. Highly effective decontamination
 BEFORE extrusion
4. Up to 40% less dwell time in the extruder
 Less thermal stress, better colour values, less energy, lower costs

TECHNICAL ADVANTAGES AND ECONOMIC

- **Low mould wear** due to low clamping force (max. 2 tonnes)
- **Gentle material treatment** thanks to very low injection pressure
- **100% inline quality control** of preforms possible
- **Up to 10% lighter PET containers** 1 less material, lower costs
- **Simultaneous production of two different bottle designs** possible

Innovative inline processing saves the “detour” of pellet production

- **Time and information advantage**
 Final IV value already known at the injection compression machine
- **Fast product changes**
 from one defined quality to another, e.g. if you want to change from preforms for water bottles to those for CSD bottles.
- **Top preform quality**
 with ideal mechanical properties for the stretch blow process
- **Top colour values**
 with hardly any yellowing
- **Up to 100% rPET content**
 Save on virgin materials, save CO₂, fit for the future with the circular economy

From flake to a finished preform

1. Compared to conventional multi-stage systems for PET recycling and preform production
2. Compared to PET process with virgin material
3. In contrast to alternative technologies, where the final IV value is only achieved after the pellet SSP, VACUREMA® technology provides very early confirmation that "everything is OK".
4. Compared to other comparable systems on the market
5. Compared to PET preforms produced using conventional injection moulding

1 Compared to conventional multi-stage systems for PET recycling and preform production
2 Compared to PET process with virgin material
**3 In contrast to alternative technologies, where the final IV value is only achieved after the pellet SSP, VACUREMA® technology provides very early confirmation that "everything is OK".
4 Compared to other comparable systems on the market
5 Compared to PET preforms produced using conventional injection moulding
QualityOn:IV

Thanks to the practical QualityOn:IV viscometer, you are informed about the current IV value at all times during the ongoing process. This continuous online IV measurement, enabled by the fully automatic control system, allows you to optimise a number of important processing parameters such as throughput, processing temperatures, filling levels, etc.

Smart Service Package

With the EREMA Smart Service Package, you have the benefit of state-of-the-art connectivity solutions. These include practical remote access services, such as remote maintenance, and BluPort, the new digital EREMA Performance Platform. These services provide intelligent solutions and apps for improved machine performance and equipment availability, quick and easy spare parts service and straightforward maintenance.

Recipe management

Do you want to change your recipe during operation? The practical recipe management system allows you to handle such product changeovers remarkably easily and quickly: simply press a button and you have all the saved process parameters of the new recycled pellets and can start with production.

Food Contact Control (FCC)

Process safety and traceability

Thanks to the automatic Food Contact Control (FCC) operating mode, the parameters for direct food contact compliance are monitored and saved continuously throughout the recycling process. If levels are not kept, an alarm is triggered automatically so that material flow can be diverted away from the production line. Data traceability is also guaranteed thanks to archiving with FCC. The result is a reliable process at all times.

Food contact compliant with VACUREMA®

Technology well within the strict EFSA limits

Test values with VACUREMA® technology
- Toluol
- Chloroform
- Benzoophenone
- Lindane
- Phenylcyclohexane

STABILITY & TRACEABILITY

QUALITY

FEATURES

FOR MORE

EFSA limit values for infants

Molecular weight (g/mol)

Cp30 (ppm)

Molecular weight (g/mol)

Toluol

Chloroform

Phenylcyclohexane

Benzophenone

Lindane

EREMA

PERFORMANCE PLATFORM

EREMA
More questions? We would be pleased to answer them!
Your EREMA advisor will be pleased to attend to your request personally and quickly.
If you are interested in a demonstration or a test run with your specific material it would be a pleasure for us to make an appointment and welcome you to our EREMA Customer Centre at the headquarters in Ansfelden, near Linz in Austria.

We look forward to seeing you at EREMA!

For worldwide representatives please visit www.erema.at

Subject to technical modifications. © EREMA Engineering Recycling Maschinen und Anlagen Ges.m.b.H.